Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Microbial biofilms in nature: unlocking their potential for agricultural applications.

Identifieur interne : 000110 ( Main/Exploration ); précédent : 000109; suivant : 000111

Microbial biofilms in nature: unlocking their potential for agricultural applications.

Auteurs : A. Pandit [Inde, Australie] ; A. Adholeya [Inde] ; D. Cahill [Australie] ; L. Brau [Australie] ; M. Kochar [Inde]

Source :

RBID : pubmed:32034822

Descripteurs français

English descriptors

Abstract

Soil environments are dynamic and the plant rhizosphere harbours a phenomenal diversity of micro-organisms which exchange signals and beneficial nutrients. Bipartite beneficial or symbiotic interactions with host roots, such as mycorrhizae and various bacteria, are relatively well characterized. In addition, a tripartite interaction also exists between plant roots, arbuscular mycorrhizal fungi (AMF) and associated bacteria. Bacterial biofilms exist as a sheet of bacterial cells in association with AMF structures, embedded within a self-produced exopolysaccharide matrix. Such biofilms may play important functional roles within these tripartite interactions. However, the details about such interactions in the rhizosphere and their relevant functional relationships have not been elucidated. This review explores the current understanding of naturally occurring microbial biofilms, and their interaction with biotic surfaces, especially AMF. The possible roles played by bacterial biofilms and the potential for their application for a more productive and sustainable agriculture is discussed in this review.

DOI: 10.1111/jam.14609
PubMed: 32034822


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Microbial biofilms in nature: unlocking their potential for agricultural applications.</title>
<author>
<name sortKey="Pandit, A" sort="Pandit, A" uniqKey="Pandit A" first="A" last="Pandit">A. Pandit</name>
<affiliation wicri:level="1">
<nlm:affiliation>TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana</wicri:regionArea>
<wicri:noRegion>Haryana</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences, Deakin University, Geelong, Vic, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences, Deakin University, Geelong, Vic</wicri:regionArea>
<wicri:noRegion>Vic</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Adholeya, A" sort="Adholeya, A" uniqKey="Adholeya A" first="A" last="Adholeya">A. Adholeya</name>
<affiliation wicri:level="1">
<nlm:affiliation>TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana</wicri:regionArea>
<wicri:noRegion>Haryana</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cahill, D" sort="Cahill, D" uniqKey="Cahill D" first="D" last="Cahill">D. Cahill</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences, Deakin University, Geelong, Vic, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences, Deakin University, Geelong, Vic</wicri:regionArea>
<wicri:noRegion>Vic</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Brau, L" sort="Brau, L" uniqKey="Brau L" first="L" last="Brau">L. Brau</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences, Deakin University, Geelong, Vic, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences, Deakin University, Geelong, Vic</wicri:regionArea>
<wicri:noRegion>Vic</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kochar, M" sort="Kochar, M" uniqKey="Kochar M" first="M" last="Kochar">M. Kochar</name>
<affiliation wicri:level="1">
<nlm:affiliation>TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana</wicri:regionArea>
<wicri:noRegion>Haryana</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32034822</idno>
<idno type="pmid">32034822</idno>
<idno type="doi">10.1111/jam.14609</idno>
<idno type="wicri:Area/Main/Corpus">000174</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000174</idno>
<idno type="wicri:Area/Main/Curation">000174</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000174</idno>
<idno type="wicri:Area/Main/Exploration">000174</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Microbial biofilms in nature: unlocking their potential for agricultural applications.</title>
<author>
<name sortKey="Pandit, A" sort="Pandit, A" uniqKey="Pandit A" first="A" last="Pandit">A. Pandit</name>
<affiliation wicri:level="1">
<nlm:affiliation>TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana</wicri:regionArea>
<wicri:noRegion>Haryana</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences, Deakin University, Geelong, Vic, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences, Deakin University, Geelong, Vic</wicri:regionArea>
<wicri:noRegion>Vic</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Adholeya, A" sort="Adholeya, A" uniqKey="Adholeya A" first="A" last="Adholeya">A. Adholeya</name>
<affiliation wicri:level="1">
<nlm:affiliation>TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana</wicri:regionArea>
<wicri:noRegion>Haryana</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cahill, D" sort="Cahill, D" uniqKey="Cahill D" first="D" last="Cahill">D. Cahill</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences, Deakin University, Geelong, Vic, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences, Deakin University, Geelong, Vic</wicri:regionArea>
<wicri:noRegion>Vic</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Brau, L" sort="Brau, L" uniqKey="Brau L" first="L" last="Brau">L. Brau</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences, Deakin University, Geelong, Vic, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences, Deakin University, Geelong, Vic</wicri:regionArea>
<wicri:noRegion>Vic</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kochar, M" sort="Kochar, M" uniqKey="Kochar M" first="M" last="Kochar">M. Kochar</name>
<affiliation wicri:level="1">
<nlm:affiliation>TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana</wicri:regionArea>
<wicri:noRegion>Haryana</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of applied microbiology</title>
<idno type="eISSN">1365-2672</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agriculture (MeSH)</term>
<term>Bacterial Physiological Phenomena (MeSH)</term>
<term>Biofilms (growth & development)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plant Roots (microbiology)</term>
<term>Rhizosphere (MeSH)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Agriculture (MeSH)</term>
<term>Biofilms (croissance et développement)</term>
<term>Microbiologie du sol (MeSH)</term>
<term>Mycorhizes (physiologie)</term>
<term>Phénomènes physiologiques bactériens (MeSH)</term>
<term>Racines de plante (microbiologie)</term>
<term>Rhizosphère (MeSH)</term>
<term>Symbiose (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Biofilms</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Biofilms</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Agriculture</term>
<term>Bacterial Physiological Phenomena</term>
<term>Rhizosphere</term>
<term>Soil Microbiology</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Agriculture</term>
<term>Microbiologie du sol</term>
<term>Phénomènes physiologiques bactériens</term>
<term>Rhizosphère</term>
<term>Symbiose</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Soil environments are dynamic and the plant rhizosphere harbours a phenomenal diversity of micro-organisms which exchange signals and beneficial nutrients. Bipartite beneficial or symbiotic interactions with host roots, such as mycorrhizae and various bacteria, are relatively well characterized. In addition, a tripartite interaction also exists between plant roots, arbuscular mycorrhizal fungi (AMF) and associated bacteria. Bacterial biofilms exist as a sheet of bacterial cells in association with AMF structures, embedded within a self-produced exopolysaccharide matrix. Such biofilms may play important functional roles within these tripartite interactions. However, the details about such interactions in the rhizosphere and their relevant functional relationships have not been elucidated. This review explores the current understanding of naturally occurring microbial biofilms, and their interaction with biotic surfaces, especially AMF. The possible roles played by bacterial biofilms and the potential for their application for a more productive and sustainable agriculture is discussed in this review.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">32034822</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>09</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-2672</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>129</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Journal of applied microbiology</Title>
<ISOAbbreviation>J Appl Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Microbial biofilms in nature: unlocking their potential for agricultural applications.</ArticleTitle>
<Pagination>
<MedlinePgn>199-211</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/jam.14609</ELocationID>
<Abstract>
<AbstractText>Soil environments are dynamic and the plant rhizosphere harbours a phenomenal diversity of micro-organisms which exchange signals and beneficial nutrients. Bipartite beneficial or symbiotic interactions with host roots, such as mycorrhizae and various bacteria, are relatively well characterized. In addition, a tripartite interaction also exists between plant roots, arbuscular mycorrhizal fungi (AMF) and associated bacteria. Bacterial biofilms exist as a sheet of bacterial cells in association with AMF structures, embedded within a self-produced exopolysaccharide matrix. Such biofilms may play important functional roles within these tripartite interactions. However, the details about such interactions in the rhizosphere and their relevant functional relationships have not been elucidated. This review explores the current understanding of naturally occurring microbial biofilms, and their interaction with biotic surfaces, especially AMF. The possible roles played by bacterial biofilms and the potential for their application for a more productive and sustainable agriculture is discussed in this review.</AbstractText>
<CopyrightInformation>© 2020 The Society for Applied Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pandit</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana, India.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Life and Environmental Sciences, Deakin University, Geelong, Vic, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Adholeya</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cahill</LastName>
<ForeName>D</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>School of Life and Environmental Sciences, Deakin University, Geelong, Vic, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brau</LastName>
<ForeName>L</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>School of Life and Environmental Sciences, Deakin University, Geelong, Vic, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kochar</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-8835-9629</Identifier>
<AffiliationInfo>
<Affiliation>TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana, India.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>Candidate ID - 216378971</GrantID>
<Agency>Deakin University</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Appl Microbiol</MedlineTA>
<NlmUniqueID>9706280</NlmUniqueID>
<ISSNLinking>1364-5072</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000383" MajorTopicYN="Y">Agriculture</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018407" MajorTopicYN="N">Bacterial Physiological Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018441" MajorTopicYN="Y">Biofilms</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058441" MajorTopicYN="Y">Rhizosphere</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">arbuscular mycorrhizal fungi</Keyword>
<Keyword MajorTopicYN="N">beneficial tripartite interactions</Keyword>
<Keyword MajorTopicYN="N">biofilms</Keyword>
<Keyword MajorTopicYN="N">fungal-bacterial biofilms</Keyword>
<Keyword MajorTopicYN="N">microbiome</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>08</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>01</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32034822</ArticleId>
<ArticleId IdType="doi">10.1111/jam.14609</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Achinas, S., Charalampogiannis, N. and Euverink, G.J.W. (2019) A brief recap of microbial adhesion and biofilms. Appl Sci 9, 2801.</Citation>
</Reference>
<Reference>
<Citation>Agnolucci, M., Battini, F., Cristani, C. and Giovannetti, M. (2015) Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates. Biol Fertil Soils 51, 379-389.</Citation>
</Reference>
<Reference>
<Citation>Agnolucci, M., Turrini, A. and Giovannetti, M. (2019) Molecular and functional characterization of beneficial bacteria associated with AMF spores. In Methods in Rhizosphere Biology Research ed. Reinhardt, D. and Sharma, A.K. pp. 61-79. Singapore: Springer.</Citation>
</Reference>
<Reference>
<Citation>Alori, E.T., Glick, B.R. and Babalola, O.O. (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8, 971.</Citation>
</Reference>
<Reference>
<Citation>Altaf, M.M. and Ahmad, I. (2016) Biofilm formation on plant surfaces by rhizobacteria: impact on plant growth and ecological significance. In The Handbook of Microbial Bioresources ed. Gupta, V.K., Sharma, G.D., Tuohy, M.G. and Gaur, R. pp. 81-95. Singapore: Springer.</Citation>
</Reference>
<Reference>
<Citation>Ansari, F.A. and Ahmad, I. (2018) Biofilm development, plant growth promoting traits and rhizosphere colonization by Pseudomonas entomophila FAP1: a promising PGPR. Adv Microbiol 8, 235-251.</Citation>
</Reference>
<Reference>
<Citation>Armbruster, C.R. and Parsek, M.R. (2018) New insight into the early stages of biofilm formation. Proc Natl Acad Sci 115, 4317-4319.</Citation>
</Reference>
<Reference>
<Citation>Ates, O. (2015) Systems biology of microbial exopolysaccharides production. Front Bioeng Biotechnol 3, 200.</Citation>
</Reference>
<Reference>
<Citation>Backer, R., Rokem, J.S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S. and Smith, D.L. (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9, 1473.</Citation>
</Reference>
<Reference>
<Citation>Bais, H.P., Fall, R. and Vivanco, J.M. (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134, 307-319.</Citation>
</Reference>
<Reference>
<Citation>Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S. and Vivanco, J.M. (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57, 233-266.</Citation>
</Reference>
<Reference>
<Citation>Battini, F., Grønlund, M., Agnolucci, M., Giovannetti, M. and Jakobsen, I. (2017) Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria. Sci Rep 7, 4686.</Citation>
</Reference>
<Reference>
<Citation>Beauregard, P.B., Chai, Y., Vlamakis, H., Losick, R. and Kolter, R. (2013) Bacillus subtilis biofilm induction by plant polysaccharides. Proc Natl Acad Sci 110, 1621-1630.</Citation>
</Reference>
<Reference>
<Citation>Berk, V., Fong, J.C., Dempsey, G.T., Develioglu, O.N., Zhuang, X., Liphardt, J., Yildiz, F.H. and Chu, S. (2012) Molecular architecture and assembly principles of Vibrio cholerae biofilms. Science 337, 236-239.</Citation>
</Reference>
<Reference>
<Citation>Berlanga, M. and Guerrer, R. (2016) Living together in biofilms: the microbial cell factory and its biotechnological implications. Microb Cell Fact 15, 165.</Citation>
</Reference>
<Reference>
<Citation>Bianciotto, V., Minerdi, D., Perotto, S. and Bonfante, P. (1996) Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria. Protoplasma 193, 123-131.</Citation>
</Reference>
<Reference>
<Citation>Bianciotto, V., Andreotti, S., Balestrini, R., Bonfante, P. and Perotto, S. (2001) Mucoid mutants of the biocontrol strain Pseudomonas fluorescens CHA0 show increased ability in biofilm formation on mycorrhizal and nonmycorrhizal carrot roots. Mol Plant Microbe Interact 14, 255-260.</Citation>
</Reference>
<Reference>
<Citation>Bonfante, P. and Desirò, A. (2017) Who lives in a fungus? The diversity, origins and functions of fungal endobacteria living in Mucoromycota. ISME J 11, 1727-1735.</Citation>
</Reference>
<Reference>
<Citation>Budi, S.W., Bakhtiar, Y. and May, N.L. (2012) Bacteria associated with arbuscula mycorrhizal spores Gigaspora margarita and their potential for stimulating root mycorrhizal colonization and neem (Melia azedarach Linn) seedling growth. Microbiol Indones 6, 180-188.</Citation>
</Reference>
<Reference>
<Citation>Chang, C.Y. (2018) Surface sensing for biofilm formation in Pseudomonas aeruginosa. Front Microbiol 8, 2671, https://doi.org/10.3389/fmicb.2017.02671</Citation>
</Reference>
<Reference>
<Citation>Chen, M., Arato, M., Borghi, L., Nouri, E. and Reinhardt, D. (2018) Beneficial services of arbuscular mycorrhizal fungi - from ecology to application. Front Plant Sci 9, 1270, https://doi.org/10.3389/fpls.2018.01270</Citation>
</Reference>
<Reference>
<Citation>Cruz, A.F. and Ishii, T. (2012) Arbuscular mycorrhizal fungal spores host bacteria that affect nutrient biodynamics and biocontrol of soil-borne plant pathogens. Biol Open 1, 52-57.</Citation>
</Reference>
<Reference>
<Citation>Desirò, A., Salvioli, A. and Bonfante, P. (2016) Investigating the endobacteria which thrive in arbuscular mycorrhizal fungi. In Microbial Environmental Genomics. Methods in Molecular Biology ed. Martin, F. and Uroz, S. pp. 29-53. New York: Humana Press, Springer.</Citation>
</Reference>
<Reference>
<Citation>Deveau, A. and Labbé, J. (2017) Mycorrhiza helper bacteria. In Molecular Mycorrhizal Symbiosis ed. Martin, F. pp. 437-440. Hoboken, NJ: John Wiley & Sons.</Citation>
</Reference>
<Reference>
<Citation>Deveau, A., Bonito, G., Uehling, J., Paoletti, M., Becker, M., Bindschedler, S., Hacquard, S., Hervé, V. et al. (2018) Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev 42, 335-352.</Citation>
</Reference>
<Reference>
<Citation>Dhawi, F. (2016) Mycorrhiza, bacteria and plant an organized model of rhizoshere interaction. IJSER 7, 61-77.</Citation>
</Reference>
<Reference>
<Citation>Duvernoy, M.C., Mora, T., Ardré, M., Croquette, V., Bensimon, D., Quilliet, C., Ghigo, J.M., Balland, M. et al. (2018) Asymmetric adhesion of rod-shaped bacteria controls microcolony morphogenesis. Nat Commun 9, 1120, https://doi.org/10.1038/s41467-018-03446-y</Citation>
</Reference>
<Reference>
<Citation>Dwivedi, D., Khare, M., Chaturvedi, H. and Singh, V. (2017) Plant pathogenic bacteria: role of quorum sensing and biofilm in disease development. In Biofilms in Plant and Soil Health ed. Ahmad, I. and Husain, F.M. pp. 387-407. Hoboken, NJ: Wiley-Blackwell.</Citation>
</Reference>
<Reference>
<Citation>Edwards, S.J. and Kjellerup, B.V. (2013) Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl Microbiol Biotechnol 97, 9909-9921.</Citation>
</Reference>
<Reference>
<Citation>Flemming, H.C. (2016) The perfect slime - and the “dark matter” of biofilms. In The Perfect Slime - microbial extracellular polymeric substances ed. Flemming, H.C., Neu, T.R. and Wingender, J., pp 1-14. New York, USA: Springer.</Citation>
</Reference>
<Reference>
<Citation>Flemming, H.C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S.A. and Kjelleberg, S. (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14, 563-575.</Citation>
</Reference>
<Reference>
<Citation>Fong, J.N.C. and Yildiz, F.H. (2015) Biofilm matrix proteins. Microbiol Spectr 3, https://doi.org/10.1128/microbiolspec.MB-0004-2014</Citation>
</Reference>
<Reference>
<Citation>Franklin, M.J., Nivens, D.E., Weadge, J.T. and Howell, P.L. (2011) Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front Microbiol 2, https://doi.org/10.3389/fmicb.2011.00167</Citation>
</Reference>
<Reference>
<Citation>Frey-Klett, P., Garbaye, J.A. and Tarkka, M. (2007) The mycorrhiza helper bacteria revisited. New Phytol 176, 22-36.</Citation>
</Reference>
<Reference>
<Citation>Frey-Klett, P., Burlinson, P., Deveau, A., Barret, M., Tarkka, M. and Sarniguet, A. (2011) Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 75, 583-609.</Citation>
</Reference>
<Reference>
<Citation>Ghignone, S., Salvioli, A., Anca, I., Lumini, E., Ortu, G., Petiti, L., Cruveiller, S., Bianciotto, V. et al. (2012) The genome of the obligate endobacterium of an AM fungus reveals an interphylum network of nutritional interactions. ISME J 6, 136-145.</Citation>
</Reference>
<Reference>
<Citation>Gkorezis, P., Daghio, M., Franzetti, A., Hamme, J.D.V., Sillen, W. and Vangronsveld, J. (2016) The interaction between plants and bacteria in the remediation of petroleum hydrocarbons: an environmental perspective. Front Microbiol 7, https://doi.org/10.3389/fmicb.2016.01836</Citation>
</Reference>
<Reference>
<Citation>Guennoc, C.M., Rose, C., Labbé, J. and Deveau, A. (2018) Bacterial biofilm formation on soil fungi: a widespread ability under controls. FEMS Microbiol Ecol 94, https://doi.org/10.1101/130740</Citation>
</Reference>
<Reference>
<Citation>Gui, H., Purahong, W., Hyde, K.D., Xu, J. and Mortimer, P.E. (2017) The arbuscular mycorrhizal fungus Funneliformis mosseae alters bacterial communities in subtropical forest soils during litter decomposition. Front Microbiol 8, https://doi.org/10.3389/fmicb.2017.01120</Citation>
</Reference>
<Reference>
<Citation>Haggag, W.M. and Timmusk, S. (2008) Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. J Appl Microbiol 104, 961-969.</Citation>
</Reference>
<Reference>
<Citation>Hassani, M.A., Durán, P. and Hacquard, S. (2018) Microbial interactions within the plant holobiont. Microbiome 6, https://doi.org/10.1186/s40168-018-0445-0</Citation>
</Reference>
<Reference>
<Citation>Hettiarachchi, R.P., Dharmakeerthi, R.S., Jayakody, A.N., Seneviratne, G., de Silva, E., Gunathilake, T. and Thewarapperuma, A. (2014) Effectiveness of fungal bacterial interactions as biofilmed biofertilizers on enhancement of root growth of Hevea seedlings. J Environ Prof Sri Lanka 3, 25-40.</Citation>
</Reference>
<Reference>
<Citation>Hildebrandt, U., Ouziad, F., Marner, F.J. and Bothe, H. (2005) The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol Lett 254, 258-267.</Citation>
</Reference>
<Reference>
<Citation>Iffis, B., St-Arnaud, M. and Hijri, M. (2014) Bacteria associated with arbuscular mycorrhizal fungi within roots of plants growing in a soil highly contaminated with aliphatic and aromatic petroleum hydrocarbons. FEMS Microbiol Lett 358, 44-54.</Citation>
</Reference>
<Reference>
<Citation>Ikuma, K., Decho, A.W. and Lau, B.L.T. (2013) The extracellular bastions of bacteria - a biofilm way of life. Nat Educ Knowl 4, 2-7.</Citation>
</Reference>
<Reference>
<Citation>Jamal, M., Ahmad, W., Andleeb, S., Jalil, F., Imran, M., Nawaz, M.A., Hussain, T., Ali, M. et al. (2018) Bacterial biofilm and associated infections. J Chin Med Assoc 81, 7-11.</Citation>
</Reference>
<Reference>
<Citation>Jung, B.K., Hong, S.J., Park, G.S., Kim, M.C. and Shin, J.H. (2018) Isolation of Burkholderia cepacia JBK9 with plant growth-promoting activity while producing pyrrolnitrin antagonistic to plant fungal diseases. Appl Biol Chem 61, 173-180.</Citation>
</Reference>
<Reference>
<Citation>Kannan, V.R., Suganya, S., Solomon, E.K., Balasubramanian, V., Ramesh, N. and Rajesh, P. (2011) Analysis of interaction between arbuscular mycorrhizal fungi and their Helper bacteria by MILPA model. Res Plant Biol 1, 48-62.</Citation>
</Reference>
<Reference>
<Citation>Kasim, W.A., Gaafar, R.M., Abou-Ali, R.M., Omar, M.N. and Hewait, H.M. (2016) Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Ann Agric Sci 61, 217-227.</Citation>
</Reference>
<Reference>
<Citation>Knief, C. (2014) Analysis of plant microbe interactions in the era of next generation sequencing technologies. Front Plant Sci 5, 216.</Citation>
</Reference>
<Reference>
<Citation>Koo, H. and Yamada, K.M. (2016) Dynamic cell-matrix interactions modulate microbial biofilm and tissue 3D microenvironments. Curr Opin Cell Biol 42, 102-112.</Citation>
</Reference>
<Reference>
<Citation>Koo, H., Allan, R.N., Howlin, R.P., Stoodley, P. and Hall-Stoodley, L. (2017) Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 15, 740-755.</Citation>
</Reference>
<Reference>
<Citation>Koul, V., Tripathi, C., Adholeya, A. and Kochar, M. (2015) Nitric oxide metabolism and indole acetic acid biosynthesis cross-talk in Azospirillum brasilense SM. Res Microbiol 166, 174-185.</Citation>
</Reference>
<Reference>
<Citation>Kumar, M., Mishra, S., Dixit, V., Kumar, M., Agarwal, L., Chauhan, P.S. and Nautiyal, C.S. (2016) Synergistic effect of Pseudomonas putida and Bacillus amyloliquefaciens ameliorates drought stress in chickpea (Cicer arietinum L.). Plant Signal Behav 11, e1071004.</Citation>
</Reference>
<Reference>
<Citation>Lecomte, J., St-Arnaud, M. and Hijri, M. (2011) Isolation and identification of soil bacteria growing at the expense of arbuscular mycorrhizal fungi. FEMS Microbiol Lett 317, 43-51.</Citation>
</Reference>
<Reference>
<Citation>Lemanceau, P., Barret, M., Mazurier, S., Mondy, S., Pivato, B., Fort, T. and Vacher, C. (2017) Plant communication with associated microbiota in the spermosphere, rhizosphere and phyllosphere. In Advances in Botanical Research ed. Callow, J.A. pp. 101-133. Academic Press, Elsevier.</Citation>
</Reference>
<Reference>
<Citation>Limoli, D.H., Jones, C.J. and Wozniak, D.J. (2015) Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol Spectr 3, https://doi.org/10.1128/microbiolspec.MB-0011-2014</Citation>
</Reference>
<Reference>
<Citation>Lin, L., Guo, W., Xing, Y., Zhang, X., Li, Z., Hu, C., Li, S., Li, Y. et al. (2012) The actinobacterium Microbacterium sp. 16SH accepts pBBR1-based pPROBE vectors, forms biofilms, invades roots, and fixes N2 associated with micropropagated sugarcane plants. Appl Microbiol Biotechnol 93, 1185-1195.</Citation>
</Reference>
<Reference>
<Citation>Magallon-Servín, P., Antoun, H., Taktek, S., Bashan, Y. and de-Bashan, L. (2019) The maize mycorrhizosphere as a source for isolation of arbuscular mycorrhizae-compatible phosphate rock-solubilizing bacteria. Plant Soil 1-18. https://doi.org/10.1007/s11104-019-04226-3</Citation>
</Reference>
<Reference>
<Citation>Malusá, E., Sas-Paszt, L. and Ciesielska, J. (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J 2012, https://doi.org/10.1100/2012/491206</Citation>
</Reference>
<Reference>
<Citation>Mhlongo, M.I., Piater, L.A., Madala, N.E., Labuschagne, N. and Dubery, I.A. (2018) The chemistry of plant-microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front Plant Sci 9, https://doi.org/10.3389/fpls.2018.00112</Citation>
</Reference>
<Reference>
<Citation>Nihorimbere, V., Cawoy, H., Seyer, A., Brunelle, A., Thonart, P. and Ongena, M. (2012) Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiol Ecol 79, 176-191.</Citation>
</Reference>
<Reference>
<Citation>Noirot-Gros, M.F., Shinde, S., Larsen, P.E., Zerbs, S., Korajczyk, P.J., Kemner, K.M. and Noirot, P.H. (2018) Dynamics of Aspen roots colonization by Pseudomonads reveals strain-specific and mycorrhizal-specific patterns of biofilm formation. Front Microbiol 9, https://doi.org/10.3389/fmicb.2018.00853</Citation>
</Reference>
<Reference>
<Citation>Omar, A., Wright, J.B., Schultz, G., Burrell, R. and Nadworny, P. (2017) Microbial biofilms and chronic wounds. Microorganisms 5, https://doi.org/10.3390/microorganisms5010009</Citation>
</Reference>
<Reference>
<Citation>Ordoñez, Y.M., Fernandez, B.R., Lara, L.S., Rodriguez, A., Uribe-Vélez, D. and Sanders, I.R. (2016) Bacteria with phosphate solubilizing capacity alter mycorrhizal fungal growth both inside and outside the root and in the presence of native microbial communities. PLoS ONE 11, https://doi.org/10.1371/journal.pone.0154438</Citation>
</Reference>
<Reference>
<Citation>Pivato, B., Offre, P., Marchelli, S., Barbonaglia, B., Mougel, C., Lemanceau, P. and Berta, G. (2009) Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, and host plant. Mycorrhiza 19, 81-90.</Citation>
</Reference>
<Reference>
<Citation>Poole, P. (2017) Shining a light on the dark world of plant root-microbe interactions. Proc Natl Acad Sci 114, 4281-4283.</Citation>
</Reference>
<Reference>
<Citation>Raklami, A., Oufdou, K., Tahiri, A.I., Mateos-Naranjo, E., Navarro-Torre, S., Rodríguez-Llorente, I.D., Meddich, A., Redondo-Gómez, S. et al. (2019) Safe cultivation of Medicago sativa in metal-polluted soils from semi-arid regions assisted by heat- and metallo-resistant PGPR. Microorganisms 7, https://doi.org/10.3390/microorganisms7070212</Citation>
</Reference>
<Reference>
<Citation>Revillini, D., Gehring, C.A. and Johnson, N.C. (2016) The role of locally adapted mycorrhizas and rhizobacteria in plant-soil feedback systems. Funct Ecol 30, 1086-1098.</Citation>
</Reference>
<Reference>
<Citation>Schmeisser, C., Krohn-Molt, I. and Streit, W.R. (2017) Metagenome analyses of multispecies microbial biofilms: first steps toward understanding diverse microbial systems on surfaces. In Functional Metagenomics: Tools and Applications ed. Charles, T., Liles, M. and Sessitsch, A. pp. 201-215. Cham: Springer.</Citation>
</Reference>
<Reference>
<Citation>Sehar, S. and Naz, I. (2016) Role of the biofilms in wastewater treatment. In Microbial Biofilms - Importance and Applications ed. Dhanasekaran, D. pp. 121-144. Rijeka: In Tech.</Citation>
</Reference>
<Reference>
<Citation>Selvakumar, G., Chandrasekaran, M., Charlotte, S., Kiyoon, K. and Tongmin, S. (2012) Spore associated bacteria (SAB) of arbuscular mycorrhizal fungi (AMF) and plant growth promoting rhizobacteria (PGPR) increase nutrient uptake and plant growth under stress conditions. Korean J Soil Sci Fert 45, 582-592.</Citation>
</Reference>
<Reference>
<Citation>Shaikh, S.S., Wani, S.J. and Sayyed, R.Z. (2018) Impact of interactions between rhizosphere and rhizobacteria: a review. J Bacteriol Mycol 5, 1058.</Citation>
</Reference>
<Reference>
<Citation>Shukla, S.K. and Rao, T.S. (2017) Staphylococcus aureus biofilm removal by targeting biofilm-associated extracellular proteins. Indian J Med Res 146, 1-8.</Citation>
</Reference>
<Reference>
<Citation>Singh, A. and Chauhan, P.S. (2017) Ecological significance of soil-associated plant growth-promoting biofilm-forming microbes for stress management. In Biofilms in Plant and Soil Health ed. Ahmad, I. and Husain, F.M. pp. 291-326. Hoboken, NJ: Wiley-Blackwell.</Citation>
</Reference>
<Reference>
<Citation>Souza, E.M., Chubatsu, L.S., Huergo, L.F., Monteiro, R., Camilios-Neto, D., Wassem, R. and Pedrosa, F.D.O. (2014) Use of nitrogen-fixing bacteria to improve agricultural productivity. BMC Proc 8, https://doi.org/10.1186/1753-6561-8-S4-O23</Citation>
</Reference>
<Reference>
<Citation>Srivastava, S., Yadav, A., Seem, K., Mishra, S., Chaudhary, V. and Nautiyal, C.S. (2008) Effect of high temperature on Pseudomonas putida NBRI0987 biofilm formation and expression of stress sigma factor RpoS. Curr Microbiol 56, 453-457.</Citation>
</Reference>
<Reference>
<Citation>Stubbendieck, R.M., Vargas-Bautista, C. and Straight, P.D. (2016) Bacterial communities: interactions to scale. Front Microbiol 7, https://doi.org/10.3389/fmicb.2016.01234</Citation>
</Reference>
<Reference>
<Citation>Su, P.T., Liao, C.T., Roan, J.R., Wang, S.H., Chiou, A. and Syu, W.J. (2012) Bacterial colony from two-dimensional division to three-dimensional development. PLoS ONE 7, https://doi.org/10.1371/journal.pone.0048098</Citation>
</Reference>
<Reference>
<Citation>Tajini, F., Trabelsi, M. and Drevon, J.J. (2011) Co-inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases P use efficiency for N2 fixation in the common bean (Phaseolus vulgaris L.) under P deficiency in hydroaeroponic culture. Symbiosis 53, 123-129.</Citation>
</Reference>
<Reference>
<Citation>Taktek, S., St-Arnaud, M., Piché, Y., Fortin, J.A. and Antoun, H. (2017) Igneous phosphate rock solubilization by biofilm-forming mycorrhizobacteria and hyphobacteria associated with Rhizoglomus irregulare DAOM 197198. Mycorrhiza 27, 13-22.</Citation>
</Reference>
<Reference>
<Citation>Timmusk, S., Grantcharova, N. and Wagner, E.G.H. (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71, 7292-7300.</Citation>
</Reference>
<Reference>
<Citation>Torres-Cortés, G., Ghignone, S., Bonfante, P. and Schüßler, A. (2015) Mosaic genome of endobacteria in arbuscular mycorrhizal fungi: transkingdom gene transfer in an ancient mycoplasma-fungus association. Proc Natl Acad Sci 112, 7785-7790.</Citation>
</Reference>
<Reference>
<Citation>Upadhyay, A., Kochar, M., Rajam, M.V. and Srivastava, S. (2017) Players over the surface: unraveling the role of exopolysaccharides in zinc biosorption by fluorescent Pseudomonas Strain Psd. Front Microbiol 8, https://doi.org/10.3389/fmicb.2017.00284</Citation>
</Reference>
<Reference>
<Citation>Vardharajula, S., Ali, S., Grover, M., Reddy, G. and Venkateswarlu, B. (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6, 1-14.</Citation>
</Reference>
<Reference>
<Citation>Velmourougane, K., Prasanna, R. and Saxena, A.K. (2017) Agriculturally important microbial biofilms: present status and future prospects. J Basic Microbiol 57, 548-573.</Citation>
</Reference>
<Reference>
<Citation>Vlamakis, H., Chai, Y., Beauregard, P., Losick, R. and Kolter, R. (2013) Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol 11, 157-168.</Citation>
</Reference>
<Reference>
<Citation>Wagner, K., Krause, K., Gallegos-Monterrosa, R., Sammer, D., Kovács, Á.T. and Kothe, E. (2019) The ectomycorrhizospheric habitat of Norway spruce and Tricholoma vaccinum: promotion of plant growth and fitness by a rich microorganismic community. Front Microbiol 10, https://doi.org/10.3389/fmicb.2019.00307</Citation>
</Reference>
<Reference>
<Citation>Walker, T.S., Bais, H.P., Déziel, E., Schweizer, H.P., Rahme, L.G., Fall, R. and Vivanco, J.M. (2004) Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol 134, 320-331.</Citation>
</Reference>
<Reference>
<Citation>Warmink, J.A., Nazir, R., Corten, B. and van Elsas, J.D. (2011) Hitchhikers on the fungal highway: the helper effect for bacterial migration via fungal hyphae. Soil Biol Biochem 43, 760-765.</Citation>
</Reference>
<Reference>
<Citation>Wipf, D., Krajinski, F., van Tuinen, D., Recorbet, G. and Courty, P.E. (2019) Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytol 223, 1127-1142.</Citation>
</Reference>
<Reference>
<Citation>Xavier, L.J.C. and Germida, J.J. (2003) Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biol Biochem 35, 471-478.</Citation>
</Reference>
<Reference>
<Citation>Zhou, Y. and Gao, X. (2019) Characterization of biofilm formed by phenanthrene-degrading bacteria on rice root surfaces for reduction of PAH contamination in rice. Int J Environ Res Public Health 16, https://doi.org/10.3390/ijerph16112002</Citation>
</Reference>
<Reference>
<Citation>Zúñiga, A., Donoso, R.A., Ruiz, D., Ruz, G.A. and González, B. (2017) Quorum-sensing systems in the plant growth-promoting bacterium Paraburkholderia phytofirmans PsJN exhibit cross-regulation and are involved in biofilm formation. Mol Plant Microbe Interact 30, 557-565.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Inde</li>
</country>
</list>
<tree>
<country name="Inde">
<noRegion>
<name sortKey="Pandit, A" sort="Pandit, A" uniqKey="Pandit A" first="A" last="Pandit">A. Pandit</name>
</noRegion>
<name sortKey="Adholeya, A" sort="Adholeya, A" uniqKey="Adholeya A" first="A" last="Adholeya">A. Adholeya</name>
<name sortKey="Kochar, M" sort="Kochar, M" uniqKey="Kochar M" first="M" last="Kochar">M. Kochar</name>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Pandit, A" sort="Pandit, A" uniqKey="Pandit A" first="A" last="Pandit">A. Pandit</name>
</noRegion>
<name sortKey="Brau, L" sort="Brau, L" uniqKey="Brau L" first="L" last="Brau">L. Brau</name>
<name sortKey="Cahill, D" sort="Cahill, D" uniqKey="Cahill D" first="D" last="Cahill">D. Cahill</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000110 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000110 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32034822
   |texte=   Microbial biofilms in nature: unlocking their potential for agricultural applications.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32034822" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020